相关文章

没有相关论文
您现在的位置: 云翼房产网 >> 房地产论文 >> 房产法论文 >> 建筑法论文 >> 正文

再论“空间句法”

作者:佚名    责任编辑:admin    更新时间:    2015-11-04 22:00:33
摘要: 本文以解释构形概念为主线,扼要介绍和评析了空间句法的理论、方法和实践及其最新进展。重点分析了空间句法的各种形态变量,以及在此基础上形成的凸状、轴线、视区、交叠凸状、所有线、可见图解分析、表面分割和端点分割、测角修正等实用的空间分析技术及其原理,指出空间句法是在结合拓扑计算方法和主要基于可见性的空间知觉分析基础之上,对空间构形进行量化解析的方法。本文亦简要解释了空间句法在实际应用中形成的“自然运动”、“意念社区”等概念。

关键词: 空间句法 构形 可见性分析 拓扑 计算机辅助空间分析

国内建筑界对空间句法的了解,多数仅限于由赵冰翻译的《空间句法——城市新见》一文.发表于1985年第一期《新建筑》上的这篇文章,简要介绍了早期的空间句法方法在城市空间形态研究方面的应用,但未全面介绍其方法背景、原理和其他应用,因此,至今很多人仍颇有不解或“持保留态度”.多年来,空间句法在各方面已有长足发展,国内杂志却鲜有论及。本文试图比较清晰地介绍和评析空间句法的理论、方法、实践及其最新研究进展。

简单地说,空间句法是一种通过对包括建筑、聚落、城市甚至景观在内的人居空间结构的量化描述,来研究空间组织与人类社会之间关系的理论和方法(Bafna, 2003)。它是由伦敦大学巴利特学院的比尔•希列尔(Bill Hillier)、朱利安妮•汉森(Julienne Hanson)等人发明的。早在1974年,希列尔就用“句法”一词来代指某种法则,以解释基本的但又是根本不同的空间安排如何产生[3].到1977 年,空间句法研究则略具雏形。经过二十余年的发展,空间句法理论已经深入到对建筑和城市的空间本质与功能的细致研究之中,并得到不断完善;由此开发出的一整套计算机软件,可用于建成环境各个尺度的空间分析;而且在建筑和城市设计中进行了广泛的应用。如今,空间句法的研究和应用已经在世界范围内普遍展开。 1997年,首届世界性的空间句法研讨会在伦敦举行;其后于1999年和2001年又在巴西利亚和亚特兰大举行了第二和第三届。2003年6月,在伦敦刚刚举行的第四届研讨会上,来自世界数十个国家和地区的82篇论文,从不同角度对空间句法进行了广泛深入的探讨。另外,日趋成熟的空间句法分析技术,已经成功应用于商业咨询。理查德;罗杰斯、诺曼;福斯特、泰瑞;法雷尔等知名事务所,在众多建筑和城市设计项目中雇请空间句法咨询公司进行空间分析,为其设计提供了有力的引导和支持。

由于篇幅所限,本文以解释构形概念为主线,重点从空间知觉的角度简析空间句法的方法原理,使读者能真正理解并实际运用它;而对于空间句法的理论概念和具体应用成果仅作扼要介绍。

1. 构形与建筑学

1.1 构形的含义

构形(configuration),从字面上看,是指“轮廓由其各部分或元素配置决定的外形”(据美国传统辞典)。希列尔将构形定义为“一组相互独立的关系系统,且其中每一关系都决定于其他所有的关系。”(Hillier, 1996, 35)所以,改变系统中一个元素的构形,就会改变很多其他元素,很可能是其他所有元素的构形属性;继而使整个系统的构形发生变化。

构形是一种普遍存在的现象。很多有形的物质形态,甚至是语言等非物质形态,当我们将其作为关系系统看待时,都会发现其构形的存在。

1.2 房屋的构形本性

在《空间是部机器》一书中,希列尔从建筑学在理论层面的深刻思考中,揭示了空间的构形本质。作者不同意“房屋最初是个庇护所”的观点,认为这是用简单的功能解释掩盖了内在的本质。作者指出,房屋是对建造前的现存环境在实体和空间上的改变。这种改变对人来说是复杂的,其中只有一部分是“功能性”的影响,即遮蔽和保护,更重要的还有逻辑和类别上的。它蕴涵着本质上是逻辑的“关系”的概念,即出现了“内部”和“外部”,其间的关系是彼此独立,但又相互暗示、补充和不可分割的。

同时,这种内、外界限在逻辑上的区别具有复杂的社会学意义。它不仅产生了物质上的分离,而且在社会上产生了分离的领域——被保护起来的空间——只认同某个人或某个群体,他们在此拥有特定的权利。是这种关系综合体的逻辑性,导致了房屋在社会上的差别,并因此房屋第一次开始反映和干预到社会关系。房屋正是通过其形态和空间在此过程中的这种本质联系,才由物质对象转化为社会和文化对象。希列尔指出,房屋通过两种方式产生居于其物质功能之上的重要社会意义:
(1)将空间完善为某些可操作的社会模式,以产生和抑制一些社会认可的——既而是规范性的——碰面和回避的模式;
(2)将实体形态完善为表达文化和艺术认同的模式。即使最初级的房屋也体现为这两种二元性,即实体形态与空间形态,和物质功能与社会文化功能。当实体和空间完善为某种模式,即我们所说的构形时,这样才产生社会文化功能。

“空间的关系配置源于头脑的排序能力和空间秩序之间的某处,社会的关系正是内在地通过这种方式,才在空间中得以领会。这样,如在形体中一样,我们在空间中也发现了房屋的物质本性和更加完善的构形本性之间的分离,虽然前者已显示初步的关系特征,但与后者相联系的是精神和社会体验,而不是物质和个人体验。从简单空间到空间构形的过程,同时也是外显通向理解的过程”(Hillier, 1996, 26)。总之,构形是房屋与生俱来的属性,也是连接物质属性与社会文化属性的中介。

1.3 建筑学理论应基于对构形的表述

人们无须有意识的思考就可以认知构形,但却不知如何描述它。这种构形的无意识性不仅局限于建筑学,“似乎贯穿于所有使用法则系统,并以社会的方式来运转的领域”。例如,语言的概念可以区分为两种:一种是我们思考着的字词及其表达的对象,另一种是我们思考所运用的句法和语义规则,后者来支配如何让字词的配置产生意义。我们思考着的字词就像事物本身,是有意识层面的。而我们思考所运用的隐藏结构,则具有构形法则的本性,它告诉我们事物是如何组织起来的,是下意识层面的。(Hillier, 1996, 40)

传统村落通过构形来传递文化和社会本性,就是通过无意识的方式来完成的。这是文化的自为,是对文化的空间和实体形态的复制,而并未有意识地理解建成环境的文化关系。“只有当形体和空间的构形不是当作无意识的规则来遵循,而是提升到有意识思考的层面,并借此成为创造性关注对象的一部分时,建筑学才开始建立。” (Hillier, 1996, 45)

希列尔指出,建筑学理论存在的最普遍的错误倾向就是“重规范,而轻分析”。很明显,在寻求指导设计之前,我们应该首先理解建筑。因此希列尔提出,建筑学理论要寻求创造一种技术,以帮助系统论述本难以言说的空间形态的构形。这种对构形的表述是建筑学理论的前提和基础,也是空间句法的重要贡献和在操作层面的核心内容。

2. 基本构形的描述与分析

2.1 构形的直观描述——关系图解(justified graph)

让我们来看一个解释空间句法的经典案例。左数第一列的三个建筑平面,其形状几乎一样,只是内部隔墙开门略有不同。但在接下来的分析中,会发现其空间构形有着巨大差异。第二列的三个平面,是将第一列平面进行图底反转,以强调我们的研究对象——空间。再用圆圈(即节点)代表矩形空间,用短线来表示它们之间的连接关系,就可转换为第三列的三个结构图解。从中可以清楚地看到a是个很深的“链形”结构,而b则是相对较浅的“树形”结构,而c是套接起来的两个“环形”结构。这种用节点与连线来描述结构关系的图解被称为关系图解。关系图解为空间构形提供了有效的描述方法,同时也是对构形进行量化的重要途径。关系图解是一种拓扑结构图解,它不强调欧氏几何中的距离、形状等概念,而重在表达由节点间的连接关系组成的结构系统。

2.2 构形的定量描述

在关系图解基础之上,空间句法发展了一系列基于拓扑计算的形态变量,来定量地描述构形。其中最基本的变量有如下五个:

(1)连接值(connectivity value)。与某节点邻接的节点个数即为该节点的连接值。在实际空间系统中,某个空间的连接值越高,则表示其空间渗透性越好。

(2)控制值(control value)。假设系统中每个节点的权重都是1,则某节点a从相邻节点b分配到的权重为[1/(b的连接值)],那么与a直接相连的节点的连接值倒数之和,就是a从相邻各节点分配到的权重,这表示节点之间相互控制的程度,因此称为a节点的控制值。

(3)深度值(depth value)。规定两个邻接节点间的距离为一步,则从一节点到另一节点的最短路程(即最少步数)就是这两个节点间的深度。系统中某个节点到其他所有节点的最短路程(即最少步数)的平均值,即称为该节点的平均深度值。用关系图解来辅助计算,则更加清晰,公式可表示为[MD=(∑深度×该深度上的节点个数)/ (节点总数-1)].例如,入口空间的平均深度值MD=(1×1+2×2+3×2+4×3+5×1)/(9-1)=3.5.系统的总深度值则是各节点的平均深度值之和。

很明显,深度值表达的是节点在拓扑意义上的可达性,即节点在空间系统中的便捷度。这一概念最初源自应用图论的研究成果[4].深度是空间句法中最重要的概念之一,它蕴涵着重要的社会和文化意义。人们常说的“酒好不怕巷子深”、“庭院深深”,这其中的“深”就有局部深度的含义,它主要表达空间转换的次数,而不是指实际距离。

上面所说的平均深度值和总深度值都是整体深度值,是对整个系统的描述;与此概念相对的是局部深度值。假设从某节点出发,要走k步才能覆盖整个系统,那么其在n步内走过的路程,即为局部深度值(这里n<k)。

(4) 集成度(integration value)。用上述方法定义的“深度值”在很大程度上决定于系统中节点的数目。因此,为剔除系统中元素数量的干扰,P.Steadman改进了计算方法,用相对不对称值(relative asymmetry)来将其标准化,公式是RA=2(MD-1)/(n-2)。[5] [其中的n为节点总数].为与实际意义正相关,将RA取倒数,称为集成度。后来又用RRA来进一步标准化集成度,以便比较不同大小的空间系统。RRA=RA/Dn.[6] 对应于整体深度值和局部深度值,也同样存在着整体集成度和局部集成度。整体集成度表示节点与整个系统内所有节点联系的紧密程度;而局部集成度是表示,某节点与其附近几步内的节点间联系的紧密程度,通常计算三步或十步范围,称为“半径-3集成度”或“半径-10集成度”。

(5)可理解度(intelligibility)。上述连接值、控制值和局部集成度,是描述局部层次上的结构特征的;而整体集成度是描述整体层次上的结构特征的。可理解度用来描述这种局部变量与整体变量之间的相关度。希列尔指出,无论对城市还是建筑空间,我们都很难原地立刻体验它,必须通过在系统中运动地观察,才能一部分一部分地逐渐建立起整个空间系统的图景。可理解度就是衡量从一个空间所看到的局部空间结构,是否有助于建立起整个空间系统的图景,即能否作为其看不到的整个空间结构的引导。所以,如果空间系统中连接值高的空间,其集成度也高,那么,这就是一个可理解性好的空间系统。

以上这些变量定量地描述了节点之间,以及节点与整个结构之间的关系,或者定量描述了整个结构的特征。此外,在具体的构形分析中,为说明特定问题,还会根据上述五个基本变量导出很多参数,在此就不一一列出了。

2.3 几何格网的构形分析

如果将平面图形用规则的细小格网来近似表示,其中的每个小格子代表一个节点,格子间的相邻关系表示连接,由此便可计算出上述各种变量。例如,用格子表示的仿西方古典建筑的立面构形,格子填充色的深浅代表集成度的分布,深色格子代表较高的集成度。可以看出集成度最高之处位于中央上部,并沿着中柱延伸至底平面。把这个立面识别为几个基本几何形的组合,然后分别计算每部分的集成度,并由此填充深浅颜色。在这里,又可发现其集成度分布呈水平状态。希列尔指出,这种由分析所揭示的中央集中的垂直结构和线形的水平结构,可能是跨文化的各种古典建筑立面中,所创造的最普遍的形式主题(Hillier, 1996, 123)。希列尔用这种细小格网的构形分析方法,对各种平面图形进行了解释;还定量地重新定义了对称、均衡等几何现象。

若将规则格网稍加变化,阻隔某些格子之间的联系,还可发现几何构形的一些普遍规律,希列尔将这一过程称为“障碍操作”试验。例如,各网格深度值的计算结果,可以发现四大原理(Hillier, 1996, 305):(1)中心性原理。阻隔条放在中间比放在边缘,会导致更大的总深度值。(2)延长性原理。分隔条越长,总深度值越大。(3)邻接性原理。相互邻接的分隔条,会比互不邻接的分隔条,导致更大的总深度值。(4)直线性原理。直线相接的分隔条,会比盘绕的分隔条,导致更大的总深度值。这四大原理是局部改变影响整个构形的普遍规律。填塞或删除某些格子也遵从这四大原理,只是删除格子的规律与其总深度值的变化方向相反。这些规律对室内空间安排和开放空间配置等实际设计问题,有一定的启发和指导意义。

3. 实际空间的构形分析方法

构形分析首先要把空间系统转化为节点及其相互连接组成的关系图解,其中,每个节点代表空间系统的一个组成单元。这种将整个空间系统划分为各组成单元的过程称为空间分割。前面将平面图形分割为细小格网进行构形分析,完全是理想状态的,是为了揭示构形的一些客观规律;若将真实的复杂空间系统,划分为大小相等的格网来分析,则没有实际意义[8].

人们主要是以运动的方式,通过视觉体验才建立起实际空间的构形。基于这种认识,空间句法通过基于可见性的空间知觉分析,形成了多种空间分割方法,现概括为如下三类。

3.1 三种基本的空间分割方法

从认知角度看,空间可分为大尺度空间与小尺度空间。大尺度空间就是超过个体的定点感知能力,从一个固定点不能完全感知的空间;而小尺度空间则是可从一点感知的。人们通过对很多小尺度空间的感知,才逐渐形成对大尺度空间的理解(江斌, 2002, 41)。复杂的城市和建筑空间可看成大尺度空间,在空间句法中,将其分割为小尺度空间最基本的三种方法,就是凸状、轴线和视区。

3.1.1 凸状

凸状本是个数学概念。连接空间中任意两点的直线,皆处于该空间中,则该空间就是凸状。因此,凸状是“不包含凹的部分”的小尺度空间。从认知意义来说,凸状空间中的每个点都能看到整个凸状空间。这表明,处于同一凸状空间的所有人都能彼此互视,从而达到充分而稳定的了解和互动,所以凸状空间还表达了人们相对静止地使用和聚集状态。空间句法规定,用最少且最大的凸状覆盖整个空间系统,然后把每个凸状当作一个节点,根据它们之间的连接关系,便可转化为前述关系图解,并计算和分析各种空间句法变量,然后用深浅不同的颜色表示每个凸状空间句法变量的高低。

3.1.2 轴线

轴线即从空间中一点所能看到的最远距离,每条轴线代表沿一维方向展开的一个小尺度空间。同时,沿轴线方向行进也是最经济、便捷的运动方式,所以轴线与凸状一样,也具有视觉感知和运动状态的双重含义。空间句法规定,用最少且最长的轴线覆盖整个空间系统,并且穿越每个凸状空间,然后把每条轴线当作一个节点,根据它们之间的交接关系,便可转化为前述关系图解,并计算和分析各种空间句法变量,最后用深浅不同的颜色表示每条轴线句法变量的高低。

3.1.3视区

简单地说,视区就是从空间中某点所能看到的区域。视区本是个三维的概念,而通常所说的视区是二维的,是指视点在其所处水平面上的可见范围[9].

定性地视区分析可探讨不同空间在整个空间结构中的控制力和影响力,并借此挖掘其社会文化意义。例如有人对城市中不同广场,或者建筑中不同房间的“凸状视区”[10]进行比较研究;还有用“钻石形空间视区”[11]分析来研究人们日常活动区域内的可见范围;用“立面视区”[12]来分析重要建筑与城市空间的结合关系。

用视区方法进行空间分割,就是首先在空间系统中选择一定数量的特征点,一般选取道路交叉口和转折点的中心作为特征点,因为这些地方在空间转换上具有战略性地位;接着求出每个点的视区,然后根据这些视区之间的交接关系,转化为关系图解,并计算每个视区的句法变量。最后的图示可用深浅不同的颜色来表示每个点句法变量的大小,并用等值线描绘出这些点之间的过渡区域。

3.1.4评析

轴线和凸状是空间句法最早采用的两种方法。多年的实践证明它们是行之有效的,空间句法在建筑与城市研究方面的大量成果,多得益于这两种方法。但它们也有不足之处:(1)其绘制过程是个相当复杂的工作,尤其对于像城市这样规模较大的空间系统。虽然有很多相关的空间句法软件,但这些软件,例如最常用的“Axman”,只能计算变量和图示成果,轴线仍需在CAD里人工绘制。Batty和Rana(2002)曾试图通过视区的最长直径来模拟轴线,但也不能准确实现其自动识别和生成。(2)最具争议的是,空间句法关于凸状要“最少且最大”,轴线要“最少且最长”的定义。究竟怎样画出的轴线和凸状,才能证明达到了上述要求呢?至今没有公认的答案[13].这样,不同人对同一空间系统难免有不同的解释,绘出的轴线和凸状图也就很容易存在差异,因此其可靠性和可比较性就很难保证。因此,空间句法的科学性受到了质疑。

上述视区分割中,特征点的选择较为主观,对于弧形道路或者较为复杂的建筑空间系统,也很难确保惟一性。所以,有学者提出用能够覆盖整个空间系统的最少视区来进行空间分割,这就是在空间系统中寻找能看到每个角落的最少观察点。这其实类似于数学上的“美术馆问题”。Batty(2001)曾借鉴和改进该数学问题的相关算法,在泰特美术馆的空间分析中进行了尝试。

3.2 三种穷尽式的空间分割方法

为了保证空间分割的代表性和惟一性,上面讨论的凸状、轴线和视区分割都强调“最少”;与此思路相反,1990 年代以来,在这三种最基本的空间分割方法基础上,逐步发展的交叠凸状、所有线和可见图解分析方法,都强调“最多”,即穷尽某一定义下所有不重复的子空间,而不管这些子空间相互交叉的复杂程度。这样虽导致运算量很大,但定义明确,所以在计算机的支持下,可自动完成分析。

3.2.1穷尽凸状——交叠凸状空间分析

根据该方法,首先画出由实体边界限定的所有最大的凸状空间,即每一凸状都要顶到实体或边界,这些凸状空间不可避免地相互交叠。两个凸状空间交叠的子区域也一定是凸状空间,而且该子区域可同时看到这两个凸状空间。这样,就可以得到数目一定的交叠凸状小空间,它们具有较大的可见范围,而未交叠的区域则可见范围相对较小(Hillier, 1996, 125)。然后,便可根据所有这些凸状空间的相互交接关系,计算上述各种句法变量。

交叠凸状分割与上面讨论的凸状分割的区别在于:(1)交叠凸状空间的每条边都一定与实体边界共线,而凸状分析只要求至少有一条边与实体边界共线;(2)凸状分析方法中,各凸状空间只可相邻,不允许交叠。所以,交叠凸状分割方法更强调实体的界定作用,而没有对各凸状空间之间的关系作出太多限制。这是其定义明确的关键所在。某变形网格平面及其凸状和交叠凸状空间分析比较。可以看出,二者的分析结果大致吻合,都显示出右部的广场及其相连的道路具有最高的集成度。

该方法分析过程繁琐,手工操作很难保证准确无误,多由计算机自动完成,但是若实体边界过多、较为复杂或含有弧线,则运算量相当大,常出错,生成的交叠凸状也过于杂乱。

3.2.2穷尽轴线——所有线分析

此方法认为空间在其初始状态下,可概念化为无限密集的线的矩阵,它暗含各种结构的可能性。若在此空间中置入物体就意味着,原有的某些运动和可见的线被打断了(Hillier, 1996, 345~347)。这时,来注意那些与该物体尽可能接近,但又未受其影响的线,也就是仅在一个顶点上与该物体相切的线。之所以注意这些线,是因为它们处在,由于物体的介入而导致的被打断的线与未被打断的线的战略交界上。这样当有另一物体置入该空间时,找出另一物体的相切顶点,则两点确定一条直线,我们就能绘出数量一定的战略线。这些战略线的集合就是“所有线”。

因此,“所有线”被定义为,与一个物体的一个顶点和另一物体的一个顶点都相切,直到碰到其他物体或空间的边界的线的集合,(另外,在具体分析时,原有空间边界的顶点亦常考虑在"所有线“连接的范围内,因为它标示了边界与物体的关系)。同样,根据这些"所有线”之间的交接关系,亦可将其转化为前述关系图解,并计算和分析各种空间句法变量。再用由红到蓝的线,代表集成度由高到低的变化。

[1] [2] 下一页

云翼房产网